Special offer for new customers: 5% OFF your first order! Use coupon: GWRITERSclose

time series

In many applications, a time series decomposition (i.e., time series filtering) is used to separate or decompose a time series  xt  into its trend, seasonal, and irregular components. In some of these applications, the decomposition relationship is assumed to be additive:    Xt =TREND t +SEASONAL t +Irregular t
While in other applications the decomposition relationship is assumed to be multiplicative: Xt =TREND t *SEASONAL t * Irregular t

1Explain the merits of such decomposition methods, and mention a particular example of a time series where you believe that implementing a decomposition technique is justified. Explain your reason(s) for selecting such an example.
2Explain in what situations you would prefer to use an additive decomposition method, and in what situations you would prefer to use a multiplicative method in your time series decomposition.

Each question about 250 words

You can leave a response, or trackback from your own site.
Powered by WordPress | Designed by: Premium WordPress Themes | Thanks to Themes Gallery, Bromoney and Wordpress Themes